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Detecting exoplanets through direct imaging is a considerable challenge, as they are 10^6 to 
10^11 times fainter than their host stars. The majority of the 7,000 exoplanets discovered 
since 1995 have been detected indirectly via radial velocities and photometric transits.  
In past years, instruments such as GPI [USA, Macintosh et al. 2014] and SPHERE 
[Europe/VLTconsortium; Beuzit et al. 2019] equipped with extreme AO and coronagraphs 
have achieved very high contrasts (10^6 at typically 500 mas). The main surveys carried out 
with these instruments (SPHERE/SHINE, GPI/Exoplanet Survey) provided valuable statistical 
constraints on the population of young giant planets. However, despite reaching their goals in 
terms of performance, they provided only a limited number of new detections (HIP65426 b 
and PDS70 b and c with SPHERE; 51 Eri b with GPI [Chauvin et al. 2017; Haffert et al. 2019; 
Macintosh et al. 2015]). Recent radial velocity surveys [e.g., Fernandes et al. 2019] and 
statistical studies of imaging surveys [SPHERE, Vigan et al. 2021] suggest that this limited 
number of detections is primarily due to the core population of giant planets being located 
near the ice line, between 2 and 5 AU, which is beyond the detection capabilities of SPHERE 
and GPI. To image these planets at small separations, a new generation of instruments and 
observatories will be commissioned in the coming years: SPHERE+ (2026) on the VLT-ESO 
followed by HARMONI, METIS, and MICADO on ESO’s ELT (2027-2028). In space, the Roman 
Space Telescope (RST - 2027) and the Habitable World Observatory (HWO - 2040) will detect 
old exoplanets like those in our Solar System, in reflected light around nearby stars. 
At small orbital separations (<5 AU), planets around the nearest stars exhibit significant 
orbital motion over the timescales required for their detection (i.e., integration times of 
several tens of hours to observe a Jupiter at a contrast of 10^-8 and an Earth-like planet at 
10^-10, as probed by RST and HWO, respectively). From the ground, Males et al. 2013 were 
the first to highlight that orbital motion cannot be neglected during the typical exposure times 
(> 10 hours) required to detect Earth-like planets around nearby stars with the ELT. Moreover, 
event for companions at larger orbital periods that will not move significantly over the course 
of a single exposure, bad weather (e.g., turbulence degradation) or technical issues will force 
observations to be halted and resumed more than 24 hours later. An algorithm that accounts 
for orbital motion will therefore be essential to avoid losing these exposures, a major concern 
when considering the cost of a night of observation on the ELT. Finally, even if it is possible to 
detect young massive planets (at a contrast of 107) before they have had time to move along 



their orbit, it may be more advantageous to split the exposures, to observe only under 
excellent observing conditions to reach the higher contrast and to constrain the orbital 
parameters within an optimal exposure time.  
Keplerian-Stacker [Le Coroller et al. 2015; 2020; 2022; Nowak et al 2018] was the first 
algorithm capable of addressing these challenges of detecting planets moving along their 
orbits in a series of observations, even when they are not detectable (S/N < 2) at each 
individual epoch. K-Stacker optimizes a likelihood function over N observations using a brute-
force algorithm followed by a local gradient-descent re-optimization stage. Note that several 
teams around the world developed these last 2 years multi-epoch recombination algorithms 
inspired by K-Stacker [Octofitter: Thompson et al. 2023; PACOME: Dallant et al. 2023].   
Nevertheless, the phase errors in the wavefront, inadequately corrected by adaptive optics 
near the coronagraphic mask, induce non-Gaussian speckle noise, which makes the detection 
of planets at the required contrast levels extremely challenging. K-Stacker enhances the 
contrast limit by effectively increasing the exposure time, even when planets move during the 
observation period. Nevertheless, a new generation of reduction algorithms is needed. The 
objective of this Phd project is to develop new algorithms that will achieve the required 
contrasts using advanced statistical methods that account for the orbital motion of planets 
during observations. The goal is to achieve a contrast exceeding 10^7 to enable the detection 
of exoplanets located near the coronagraphic mask (e.g., close to the ice line, within 5 AU at 
less than 30 PC) and to deliver robust detection probabilities with future instruments. To 
achieve this goal, several approaches are being considered: 

 • Integrate an MCMC framework (e.g., using emcee) to optimize the final computation 
of K-Stacker. 

 • Merge the MCMC algorithm developed by Beust, H. et al. 2016 (collaboration with 
LAM-OSUG) with K-Stacker to account for N-body orbital motions and complex orbits 
(e.g.,  e > 0.9 ). 

 • Develop a machine-learning-based version of K-Stacker from scratch. 

 • Build an infrastructure capable of injecting a large number of synthetic planets 
(spanning various orbits and fluxes) to produce robust detection statistics (e.g., rates of 
true/false positives and negatives). 

 • Process data from future observatories (ELT instruments, RST, HWO). 
 

The aim of the Machine Learning/Deep Learning techniques is to develop an alternative 
approach to the classical PCA-ADI (classical High contrast imaging methods) and K-Stacker 
methods. The goal will be to search for planets directly in the raw data, as they move along 
their orbits during the observation, potentially bypassing ADI processing. We will check 
whether the neural network has converged towards a solution corresponding to a Keplerian 
orbit (inverse approach). We plan to use a UNet-type algorithm [Huang, H., et al. 2020; 
Ronneberger, O., et al. 2015; Zhou, Z., et al. 2018], potentially combined with a denoising 
method [Buchholz, T.-O., et al. 2020], or an unsupervised deep learning model such as 



‘Recorrupted-to-Recorrupted’ for image denoising. The “Laboratoire d’Astrophysique de 
Marseille” (LAM) has strong expertise in Machine Learning, thanks to its team at the “Centre 
de Données Astrophysiques de Marseille” (CeSAM), and has already applied UNet to detect 
transits in simulated data from the PLATO space telescope [Vivien, H.G. et al. 2024], a 
mathematical problem closely related to what we aim to achieve, with the added complexity 
of orbital motion (i.e., detecting a planet peak instead of a transit, in non-Gaussian noise). 
 
The student will be integrated into the LAM, within a team specialized in high-contrast 
imaging. He will be supervised by H. Le Coroller, who is responsible for multi-epoch 
recombination algorithms (CO-I) for the NASA HWO project, and will collaborate with E. 
Choquet’s team, leading the ERC-Escape project, which will provide simulated RST images. The 
student will also interact with other experts, such as A. Vigan, RST’s French representative for 
CNES at LAM. In the context of the Roman Space Telescope (RST), the student will have the 
opportunity to collaborate with CNES, which brings its expertise—through its collaboration 
with Orphee Faucoz, on Machine Learning and Deep Learning techniques. Additionally, the 
student will benefit from the support of the Machine Learning “Centre de données 
Astrophysiques de Marseille” (CeSAM). The Laboratoire d’Astrophysique de Marseille (LAM) 
will provide access to a computing cluster managed by CeSAM, along with technical support 
for intensive computational tasks. 
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